
iDefrag
Quick Start Guide

2

Introduction
This guide provides a brief overview of iDefrag but does not cover every feature of iDefrag. The
help within iDefrag provides a more comprehensive reference guide.

If, having read this guide and looked in the help, you still can’t !gure out how to use the product
to achieve a particular goal, please contact our support team who will be happy to assist.

Contents

..Before you start 4

..Authorization 5

...Main Display 6

..Algorithms 9

...................................How can I tell if my disk needs defragmenting? 10

...What next? 10

..ermal Monitoring 10

..e Info Panel 11

..Troubleshooting 12

...Appendix - Filesystems and Disks 13

3

Before you start

While we don’t know of any bugs in iDefrag that could cause data loss, defragmenting is inher-
ently risky and the sustained access to the disk that you get whilst defragmenting can aggravate
existing hardware problems with your disk.

You should also check your !lesystem for errors. To do this, you can either select Check for Errors
from the Defragment menu, or you can use Disk Utility; they both perform exactly the same
checks. If you use Disk Utility it’s the “Verify Disk” button that you need to select, not the “Verify
Permissions” button.

4

Before letting iDefrag go to work, you should back up any important data that
you have.

If you don’t keep regular back-ups, your data is at risk even without using disk
utility software.

Disks fail all the time; as a mechanical component they are one of the most unreli-
able parts of your computer, and given that you are probably storing all of your
photos, music and maybe even home movies on your machine it makes sense to
keep your data safe.

Fortunately, Apple provides an easy-to-use back-up system called Time Machine
that you can use to keep your data safe. More advanced users may prefer other
software, but for many people Time Machine provides set-and-forget back-up and
peace of mind.

Figure 1 The computer is asking for your permission to access this disk.

Authorization

Mac OS X has built-in security features to prevent applications (and other users) from accessing
the disk directly. As a result, iDefrag sometimes needs to ask you for permission when you select
a disk. When this happens, you’ll see a gold colored padlock like that in Figure 1, above.

Click on the lock button and then enter your OS X username and password when prompted. It is
not asking you for the username and password that you might have been given when you pur-
chased iDefrag.

5

Whenever you see a gold padlock, your computer is asking for your permis-
sion to perform some operation.

You should read the window being displayed on the screen carefully to understand
which program is asking for permission and why, and only enter your OS X adminis-
trator log-in details if you are sure you know what will happen.

Main Display

In Figure 2, opposite, you can see the major features of iDefrag’s main window:

1. Using this pop-up list, you can choose which of iDefrag’s algorithms you want to run. Algo-
rithms are discussed below.

2. When you’re ready, click the Go button to start defragmenting. You may be able to make out
a small gray circle containing a white left-pointing arrow at the bottom corner of the Go but-
ton. This is the restart badge, and indicates that iDefrag will need to restart your computer to
defragment this disk; some disks can be defragmented without a restart, and in that case the
badge will not appear.

3. Each square in this area of the window represents a single block in your !le-system. The col-
ors indicate what kind (or class) of !le is using the block — for example, green is used to rep-
resent Applications. Note that iDefrag shades adjacent runs of blocks of the same color in an
alternating light/dark pattern, so you can see the ends of your !les or fragments. Anything
that’s red is fragmented.

4. This part of the window shows a representation of the entire disk. The white parts show what
is free space. In this particular example, you can see that there are a lot of fragmented !les
(they’re red) and there’s not much free space (white).

5. At the bottom you’ll see some tabs that you can select that will show you more information
about the volume. You’ll !nd more information about the other tabs in the Help.

6. On the left, you’ll see a list of volumes that you can choose from. iDefrag will only list vol-
umes that it supports: the Mac !lesystem format (HFS+); not Windows formats such as FAT or
NTFS.

6

If the default colors are not to your taste, you can change them from the
Key panel

Your custom colors will be saved in iDefrag’s preferences for future sessions.
Just like the default set, each color you set will be drawn in a darker and a
lighter version so that you can see individual fragments on your disk.

Many external drives come pre-formatted with FAT

If you purchase an external disk, it will probably have been formatted for use
with a PC.

In order to provide the best performance, and to allow the use of all of the fea-
tures of Mac OS X, we recommend re-formatting external disks before use with
the Mac OS Extended (journaled) option in Disk Utility.

1 2

6
3

4

5
Figure 2 iDefrag’s main window

7

What does the Class Set pop-up do?

Advanced users can create new categories (or classes) of !le and can
specify what iDefrag is supposed to do with them, by de!ning their own
classes in a “class set” !le.

You can !nd the details in the iDefrag Help.

Defragmenting your Startup Volume

If you just want to have a play with iDefrag !rst without actually defragmenting, skip this section
and come back to it later.

To defragment your startup volume, you can try one of the following:

• You can let iDefrag restart into a mode where it has exclusive access to your volume. iDefrag
will offer to do this when necessary. You will need about 1 GB of free disk space and you will
not be able to run any other programs whilst iDefrag is running.

• You can create a bootable DVD and use that. To do that, select Create Boot Disk from the iDe-
frag menu and follow the instructions. You will need a DVD burner and some recordable me-
dia. Note that booting from a DVD can take considerably longer to boot (several minutes) than
your normal startup volume.

• If you have another Mac, you can use Target Disk Mode. See this page on Apple’s support site
for instructions about how to do this: http://support.apple.com/kb/HT1661.

• If you have an external drive or you have partitioned your main hard drive, you can install OS X
on it and boot from that. We do not discuss the details of doing that here but you should be
able to !nd guides on the Internet if you are interested in doing this.

8

Except when using the Quick (on-line) algorithm, iDefrag needs exclusive ac-
cess to the volume you want to defragment.

If other programs are using the disk, it may not be possible to gain exclusive access.
Sometimes you may be able to terminate other programs to resolve this problem,
but for the start-up volume the operating system itself is using the disk and so you
will need to use one of the options listed below.

Note also that background software such as anti-virus programs can prevent you
from giving iDefrag exclusive access. The options below may be useful in that case
also.

Some older PowerPC (G4) Macs have bugs in their implementation of
FireWire Target Disk Mode.

On affected machines, the FireWire logo may stop moving from place to place on
the display; this may also cause iDefrag to display the beach ball cursor.

We recommend that you use a different method for older PowerPC systems.

http://support.apple.com/kb/HT1661
http://support.apple.com/kb/HT1661

Algorithms

iDefrag comes with a number of different algorithms and one of the !rst things that most peo-
ple ask is which one should be used. In this version of iDefrag, the available algorithms are:

Full Defrag

If you don’t want to think about which algorithm to choose, choose the Full Defrag algorithm
(which is actually a combination of the Metadata and Optimize algorithms). The Full Defrag algo-
rithm is the most comprehensive of all the algorithms and will be the right thing for most peo-
ple. After running this algorithm to completion, all your !les should be defragmented and in an
optimum position on your disk.

Compact

This algorithm compacts your free space but won’t defragment !les. It is much faster than the
Full Defrag algorithm. Use this algorithm if you’re having trouble with the Boot Camp assistant or
if you don’t have the time to run the full defrag option. Even though it doesn’t defragment !les,
it can still be quite effective because it can re-enable OS X’s built-in defragmentation (which will
stop working when your free space is too fragmented).

Quick (on-line)

This algorithm is useful if iDefrag is unable to get exclusive access to the volume that you want
to defragment and you don’t have the time to reboot. This algorithm will only work on !les that
are not currently in use (which rules out all system !les).

Optimize & Metadata

Please see the Help for detailed descriptions of these algorithms. Unless you have a speci!c rea-
son not to, you should use the Full Defrag algorithm which is a combination of these two algo-
rithms.

9

Figure 3 A heavily fragmented disk

How can I tell if my disk needs defragmenting?

iDefrag offers a number of ways of measuring this but perhaps the simplest way is to look at the
representation of the whole disk at the bottom of your screen. You can see a screen shot of a
heavily fragmented disk in Figure 3, above.

Note the lack of big chunks of white, indicating free space, and a fair bit of red coloring, showing
fragmented !les.

The other option is to look at the Statistics tab. Here you’ll see a lot of information regarding the
state of your volume. Please see iDefrag’s built-in help to !nd out what exactly the numbers
mean. We don’t provide advice as to when you should or should not defragment, but if you
make a note of the numbers on the statistics tab, you can see how they change over time and
before and after defragmenting and make a judgement from that.

What next?
When you’re ready to start defragmenting, click the Go button and iDefrag will start. The process
can take a long time although it depends on the algorithm. The Full Defrag algorithm can take
many hours and we advise you to leave it running over night. You can choose what iDefrag does
when it has !nished, e.g. turn your machine off—select Preferences from the iDefrag menu.

For the off-line algorithms, you will not be able to access the volume that iDefrag is working on,
but you can continue to work with any other volumes that you might have mounted; your op-
tions are obviously limited if iDefrag is running from a boot disk.

You can pause defragmentation at any time, but this will not give you access to your volume—it
prevents iDefrag from using any processor resources, which might be useful if you want to dedi-
cate your machine’s processor to some other task for a while.

Thermal Monitoring

During operation, iDefrag will monitor the temperature of most disks (it will warn you if it can’t)
and pause if the temperature exceeds thresholds de!ned in the Preferences. By default, iDefrag
is set to stop at 55°C which is appropriate for many disks, but some disks operate at a higher
temperatures. If you !nd iDefrag is frequently stopping, it’s worth checking to see what tem-
perature your disk operates at and you can usually !nd this information by searching the Inter-
net for the model number of your disk. The model number of your disk can be found by using
the System Pro!ler application that comes with OS X.

10

Figure 4 The Info panel

The Info Panel
Click on the Info button on the toolbar to display the Info Panel, shown in Figure 4, above.

The Info panel updates automatically as you hover over the blocks in iDefrag’s main window, and
will show you detailed information about whatever it is that is currently under your mouse
pointer.

If you click on an block, iDefrag will select all of the blocks that make up the !le on which you
have clicked and the information for this !le will be displayed in the Info panel when you aren’t
hovering over anything else.

If the selected !le is fragmented, you can click on the Defrag File button in the toolbar to de-
fragment just this selected !le. You won’t able to do this for system !les or !les that are in use by
other applications (same as for the on-line algorithm), you’ll have to use one of the off-line algo-
rithms to do this.

11

Troubleshooting

If you are having problems with iDefrag, check the help within iDefrag, particularly the
“Troubleshooting” sections. A copy of this help can also be found here:

http://www.coriolis-systems.com/help/iDefrag-2/

Also, check the frequently asked questions page for iDefrag:

http://www.coriolis-systems.com/iDefrag-faq.php

If you still cannot !nd an answer to your question you can contact our support team:

support@coriolis-systems.com

If you want to report a bug, request a feature or suggest an improvement in iDefrag you can do
so via the menu option within iDefrag or you can do it on-line here:

http://www.coriolis-systems.com/bugreport/

12

http://www.coriolis-systems.com/help/iDefrag-2
http://www.coriolis-systems.com/help/iDefrag-2
http://www.coriolis-systems.com/iPartition-faq
http://www.coriolis-systems.com/iPartition-faq
mailto:support@coriolis-systems.com
mailto:support@coriolis-systems.com
http://www.coriolis-systems.com/bugreport
http://www.coriolis-systems.com/bugreport

Appendix - Filesystems and Disks
Introduction

The information in this appendix is intended to give a non-technical reader some idea about the
workings of hard disks and the ways in which computers store !les.

You don’t need to read this appendix in order to use iDefrag, but it may help to understand what
the program is showing you and why you might want to defragment your disk in the !rst place.

13

Head armature rotates,
moving heads across
the disk surface

Platter

Platter rotates,
passing under head

Spindle/hub

A typical drive has multiple platters mounted
on a central spindle, and multiple heads attached
to the head armature

Head armature

Head

Spindle

Figure 5 Inside a typical hard disk you will !nd a set of platters mounted on a rotating spindle, each with one or
more disk heads #oating just above the surface.

About your hard disk

Everyone is familiar with the notion that a hard disk can store data in !les, but quite how this is
achieved is, for most users, largely a mystery. Indeed, many people these days probably don’t
even give it a second thought.

All of the explanation that follows is talking about magnetic disks; the details for other storage
devices, including tapes, optical discs, solid-state storage devices and so on are different. A mag-
netic disk, whether a #oppy disk or a hard disk, consists of

• one or more circular platters (the disk media) coated in a magnetic medium,

• one or more disk heads, which are able to replay and record a signal on the magnetic surface of
the platter,

• a spindle motor, which is responsible for spinning the platters at high speed (typically for a hard
disk 5,400 rpm or higher), and

• some kind of actuator that can move the disk heads in and out (this might be a stepper motor
for #oppy disks, or more typically on hard disks a voice coil might be used)

Figure 5 shows a simpli!ed drawing of the inside of a typical hard disk. In practice there would
be two heads per platter, one for each surface, the platters and armature would be much closer
together, and the disk heads themselves would be very small indeed.

In order to read data from the disk, the disk drive must position its heads at the correct distance
from the spindle, then wait for the data to pass under the head for the platter on which the data
is stored. The location of the head relative to the spindle is de!ned by the cylinder number. A
combination of a cylinder number and a head number de!nes a circular track on a particular side
of a particular platter. Each track is further divided up into sectors, each of which can usually hold
512 bytes of data, and so the combination of a cylinder number, a head number and a sector
number identi!es a unique sector on the disk’s media.

14

Sector

Track

Head
(selects a particular
side of a particular
platter)

Cylinder

To identify a particular piece of data on the disk surface,
it is necessary to specify which cylinder, head and sector
you wish to access.

Once the head has been moved to the correct cylinder,
the disk must wait for the sector to pass under the head
due to the rotation of the spindle.

Figure 6 Selecting a particular sector by cylinder, head and sector numbers.

In terms of the mechanics of the disk drive, selecting a head is done electronically, and takes es-
sentially no time at all. The time spent waiting for a particular sector to pass under the disk head
obviously depends on the rate of rotation of the drive and the size of the sectors; this is one rea-
son why hard disks that spin at a higher rate are preferable, though the high rate of rotation also
means that individual bits of data pass under the head faster, resulting in a higher rate of data
transfer.

Changing cylinder is comparatively expensive, taking of the order of several milliseconds on a
typical modern drive. Moving the heads a single cylinder’s width in or out is relatively quick as
the positioning mechanisms typically used in modern drives are accurate enough to move one
cylinder in either direction reliably. For longer movements, however, the mechanism may not be
sufficiently accurate to guarantee that it will move the heads to the correct location; as a result,
each track contains information allowing the drive to identify the track over which the head is
currently located. If the drive does not move to the correct track the !rst time, it may need to
move again, typically by successively smaller distances, until it !nds the right location.

The most expensive movements are normally “full-stroke” movements, where the disk heads are
moved from the innermost cylinder to the outermost cylinder or vice-versa.

Figure 6 shows the process of locating a given sector on the disk using cylinder, head and sector
numbers.

Older disks, with the exception of SCSI disks, typically expect the host computer to provide them
with co-ordinates for data in this form, which is also referred to as CHS or Cylinder Head Sector.
Unfortunately this scheme has a number of downsides, notably that different disks will have dif-
ferent numbers of cylinders and heads, and may even choose to have different numbers of sec-
tors on each of their tracks; the arrangement of cylinders, heads and sectors for a given disk is
referred to as its geometry. Using real CHS values also prevents the disk from easily re-assigning
sectors where it discovers that the magnetic media is damaged, and instead the computer’s
software must deal with this problem itself.

15

Finally, as disks grew in size, it became apparent that the !elds reserved for cylinder, head and
sector numbers, both in software and in hardware, were too small to cope. As a result, IDE disks
started to lie to the host computer about their geometry, both for compatibility with the PC BIOS
and so that they could start to manage bad sectors automatically themselves.

Modern disks are not generally used with CHS values; instead, sectors are given a number start-
ing from zero or one. This is often referred to as a Linear Block Address or LBA. When accessed in
this way, the disk manufacturer is free to choose the locations of each sector on the physical me-
dia in any way they please so as to optimize the performance of their drive mechanism; normally
the assignment of blocks is done in such a way as to guarantee good performance if the blocks
are accessed in LBA order.

16

Filesystems, volumes and partitions

So we know now that disks can be regarded as a numbered array of sectors, each of which can
store 512 bytes of data. There are disks where the sector size differs from that, but almost all hard
disks used today stick with these 512 byte blocks.

If that was all that we had, life would be very tedious indeed. Even on a 1.44MB #oppy disk, there
are two heads (corresponding to the two sides of the disk), eighty cylinders and each track holds
eighteen sectors, giving a total sector count of 2 × 80 × 18 = 2,880 sectors. Keeping track of
which of them are in use and where your !les are on the disk would be a real pain.

A modern 500GB hard disk, on the other hand, has nigh on a billion sectors and can store hun-
dreds of thousands or even millions of !les. How are we supposed to locate that photo that we
saved last week? You’d need a building full of !ling cabinets!

Fortunately this is exactly the kind of tedious job that computers are good at, and the pieces of
software that they used to keep track of all of your precious data are called !lesystem drivers. Ap-
ple’s HFS+ (aka Mac OS Extended) is one example, and you have probably also heard of Micro-
soft’s FAT and NTFS !lesystems as well.

Different !lesystems use different approaches to store the information about where your !les are
on the disk, about the sectors that are or are not currently in use, and so on, but what they have
in common is that given a disk formatted for use with that !le system, and the name of a !le on
that disk, they can work out which sectors hold the data for that !le and return the data to the
program that is attempting to access the !le.

It is important at this point to note that the word !lesystem is used interchangeably by some
people to mean several different things; sometimes they mean the computer code responsible
for locating your !les on the disk; other times they mean a particular formatted disk; and on still
other occasions they mean the abstract design of the data structures themselves.

This is all very confusing, and so Apple very sensibly tends to use the following words:

!lesystem The abstract design, including data structures and algorithms; the information
presented in the !lesystem speci!cation – essentially an instruction book that
tells you how the data is stored.

!lesystem driver The computer program that implements the abstract design, thereby allowing
your Mac to read a disk formatted according to the !lesystem speci!cations.

volume The contents of a particular disk, formatted according to the !lesystem speci!-
cations.

In addition, rather than the whole disk being used to hold a single volume, disks can be divided
into pieces called partitions, each of which might contain a separate volume.

17

(a) SimpleFS Version 1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
File
List

Alloc
Table

(b) After saving some !les

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
File
List

Alloc
Table File AFile AFile AFile AFile A File BFile BFile B File CFile C

(c) And deleting File B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
File
List

Alloc
Table File AFile AFile AFile AFile A File CFile C

Figure 7 SimpleFS version 1.0

To help us understand what the !lesystem does, let’s take a look at an idealised !lesystem, which
we’ll call SimpleFS.

SimpleFS version 1 supports storage of !les in contiguous chunks on disk. We’ll imagine that we
have a very small disk with sixteen blocks total. We’ll allocate one block to hold a list of the !les
on the disk, and in case we want to cope with bigger disks in future, we’ll allocate another to
hold information on which blocks are allocated, as shown in Figure 7 (a).

We’ll skirt over exactly how this information is stored in these reserved blocks, as it doesn’t mat-
ter for the purposes of our explanation.

So, let’s save a !le to our disk; our !le is 3,000 bytes in length, so it takes up 3,000 ÷ 512 = 5.9
blocks. SimpleFS only lets us allocate entire blocks, so we’ll use 6 blocks to store this !le — call it
“File A”. We’ll also save “File B”, 1,300 bytes long (3 blocks), and “File C”, 1,000 bytes long (2
blocks). The result is shown in Figure 7 (b).

Easy so far, right?

Next, let’s delete “File B” from our disk. The result is shown in Figure 7 (c).

Imagine we now wish to save a new !le, “File D”, and that this new !le is 2,400 bytes in length (5
blocks). We have seven blocks free, but the largest contiguous space is only four blocks long!
That’s no good — we can’t save our new !le even though we have 50% of the usable blocks
marked as not allocated!

Let’s imagine for a moment that we can somehow upgrade our disk to a new SimpleFS 2.0 that
allows us to use all of these blocks to store our data. We still want to save “File D”, which takes up
!ve blocks, so we store the !rst three in blocks 7, 8 and 9, and the remainder in blocks 12 and 13.
Figure 8 (a) shows the result.

This is great! We can use every block on the disk if we want.

18

(a) SimpleFS Version 2.0 with File D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
File
List

Alloc
Table File AFile AFile AFile AFile A File D

(Part 1)
File D
(Part 1)
File D
(Part 1)

File CFile C File D
(Part 2)
File D
(Part 2)

(b) On-disk layout

File List

Alloc TableFile A

File A

File D
File C

File D

File D

On-disk layout of the blocks, assuming a very
simple mapping of linear block address to
physical disk blocks.

File List

Alloc TableFile A

File A

File D
File C

File D

File D

The path taken by the disk head to read File D

Figure 8 SimpleFS version 2.0

Unfortunately, we have created a problem for ourselves. Let’s assume that the disk we’ve format-
ted for use with SimpleFS is very old and slow. For sake of argument, let’s give it a single platter
with only a single side, so we have one head, and let’s give it four cylinders, with each track hold-
ing four sectors.

For the next part, you can follow what is going on by starting at the black spot in the right hand
part of Figure 8 (b) and tracing the line as it goes clockwise around the disk.

Assume we want to read “File D” from the disk, we !rst have to go and !nd it in the !le list, which
means reading block 0. The !le list tells us where “File D” is on the disk, so the next sector we
want to read is block 7, which on our disk is on track 1; we’re currently on track 0, so we move the
head out out one track. But we aren’t in the right place to read block 7, so we have to wait for the
disk to revolve until the head is over block 7 so we can read it.

Having read block 7, we now need block 8; this is on track 2, and our disk head is over track 1, so
we move the head outwards again. Yet again, we aren’t in the right place to read block 8 (we’ve
missed the beginning of it), so we need to wait for the disk to rotate again.

(If you’re following along at this point, switch to the grey line.)

19

We can now read blocks 8 and 9 one after the other, without moving the disk head. The next
block, though, is block 12, and that’s on the outer track, track 3, so we yet again need to move
the head out one track, and since yet again we aren’t in the right place yet, we need to wait for
the disk to rotate.

Finally, we read blocks 12 and 13 one after the other, and we’re done.

During this process, the disk has revolved three and a half times, and we’ve had to move the
head three times, not counting any initial movement to get to the starting point on track 0.

Let’s say this disk is very slow indeed, and takes half a second to move the head, and rotates at
20rpm. We’ve spent a total of 3 × 0.5 + 3.5 ÷ 20 × 60 = 12 seconds reading this !le.

Now let’s consider what might happen if we swapped the positions of the end of “File D” with
“File C”. Well, this one simple change will put the !nal blocks of “File D” on the same track as the
previous two blocks, so we could read 8, 9, 10 and 11 one after another, without moving the disk
head and without waiting for the disk to rotate. We save one head movement and one and a half
rotations!

In that case, we would only spend 2 × 0.5 + 2 ÷ 20 × 60 = 7 seconds.

That’s a 42% time saving, just for moving the blocks of “File D” so that they’re next to one another
on the disk!

When a !le is split into more than one piece like “File D” was here, it is said that that !le has be-
come fragmented, and the pieces are typically referred to as fragments. On the Mac !lesystem,
HFS+, you may also see them referred to as extents, which is a reference to the way the !lesystem
maintains the information about the fragments of a !le.

As you can hopefully see from this (heavily simpli!ed) example, allowing the !lesystem to frag-
ment !les is a trade-off. Without it, you might not be able to use all of the space on your disk, but
on the other hand, a fragmented !le might take a lot longer to read or write than it would if the
!le was in a single piece.

Clearly, therefore, what you don’t want is for a !le to be fragmented when it didn’t have to be.

20

What does my Mac do to avoid fragmentation?

You’ve probably heard some people say “You don’t need to defragment Macs”, and it’s true that
the Mac !lesystem, HFS+, includes a number of features designed to avoid fragmentation and
thereby improve the performance of your machine.

The simplest of these is the way it chooses which blocks to allocate on the disk. In general, com-
puter programs don’t tell the computer the size of the !le they intend to save before saving it.
Even if the computer delays writing to the disk, it might not know the full size of the !le within a
reasonable amount of time. As a result, picking a space of exactly the right size is difficult.

At !rst sight, it might seem that this will be a huge disadvantage when our goal is to fragment
!les as infrequently as possible, but it turns out that computer scientists have shown that choos-
ing a space of exactly the right size (or best-!t) is no better in practice than other ways of choos-
ing a space to allocate.

There are various other allocation strategies that have been investigated; for instance, we might
simply pick the !rst available space (this is called !rst-!t). Another rather surprising choice is to
pick the largest space available, and always use that (worst !t). Again, it has been shown that in
general neither of these is worse than best-!t!

Many !lesystems use !rst-!t (or variations on it), partly because they don’t know the size of the
!le when they have to pick the !rst block, and partly because it avoids searching through all of
the free spaces to !nd the best or worst option.

Apple’s !lesystem engineers, though, spotted something about the way people use disks. Until
very recently, the !les you saved on your disk were very likely to be much smaller than the disk
you were using. As a result, it would take a long time for a typical user to use their disk com-
pletely. Imagine, rather than picking the !rst space, or trying to !nd the “best” space, just choos-
ing the next space. If the user has yet to use every block on their disk, we know there is a good
chance that, no matter how large the !le we need to save, we won’t need to fragment it, and the
best part is that keeping track of the next space to use is easy — we just keep a bookmark, or
pointer to it. This approach is known as a roving pointer algorithm.

This clever choice worked well when most people used their computers to store word-processor
documents, spreadsheets and other simple data !les; it took a long time for a typical user to get
through every block on a disk, and so it was a long time before the computer had to fragment a
!le. However, modern media !les, such as photos, iTunes or MP3 music !les and particularly
video !les and movies are much larger and make it much easier for an ordinary user to defeat
this simple approach.

Under Mac OS X, HFS+ also includes some limited automatic defragmentation. If you have jour-
naling turned on, and the fragmented !le is smaller than twenty megabytes, and it has more
than eight fragments, Mac OS X will defragment it for you when you access it, assuming that
there is sufficient contiguous free space.1.

21

1 Correct at time of writing.

